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Background

Sylvester-Gallai Theorem: Given a finite set of points in R?, either

o all the points are collinear; or

® there is a line passing through exactly 2 points, called an ordinary line.

Figure 1: Kelly's [4] picture proof of the Sylvester-Galllai Theorem.

Question: How many ordinary lines do n non-collinear points determine?
= # of lines through exactly r points. (So ty = # of ordinary lines.)
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Answer (Green-Tao)[2]: n non-collinear points in R* have 5 > 3

This is tight due to the following construction by Boroczky:
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Figure 2: 5 points on a circle and 3 points on a line determining 5 ordinary lines

The Sylvester-Gallai Theorem is not true over C*. Here is a counterexample:

Figure 3: Hesse configuration[1]: 9 inflection points of X° + Y + Z°% = 0.

We do have an analogue of the Sylvester-Gallai Theorem in C? :
Theorem (Kelly, [3]) Given a finite set of points in C?, either:

o all the points are coplanar; or

® there exists an ordinary line.

Given n points in C?, not all coplanar, how many ordinary
lines do they determine?

Results

Theorem 1: Given a set of n points in C°, at most n—2
points tn any plane,

ty >
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Figure 4: Exceptional Case: n — 1 coplanar points have as few as n — 1 ordinary lines.

Theorem 2: Given a set of n points in C°, at most %n
points tn any plane,
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to > §n+c S rit,.

r>4

Theorem 3: Given a set of n points in C*, at most %n

in any three-dimensional affine subspace,
f> 2
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Proof Sketch

- Given {vy,...,v,} € C% let V be the n x d matrix with ' row v;.
« Construct a matrix A, where each row of A corresponds to coefficients

of a collinear triple v;, v;, vg.

A V
x ox x 0 0 0 --- 0] - i
0 0 % % 0 % - 0 vl
U2
=0
0 %« 0 0 % 0 - x| L Un :

Figure 5: * indicates a nonzero coefficient of a collinear triple.

Proof Sketch Continued

If A has no large zero submatrix:

« If ¢y is small enough, we can show A has high rank.

« This forces V' to have small rank, small enough to make the points span
only 2 dimensions. Contradiction!

If A has a large zero submatrix:
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Figure 6: The large zero submatrix has support on rows of U and columns of W.

We get a lemma that one of the the following 2 cases holds:

©® (When
® (When

W
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is large:) to > |2 n, Or

is small:) There is point with least sn — [W| ordinary lines.

[terate this lemma by pruning points with many ordinary lines. Done!

Open Questions

= Is the bound on Theorem 1 tight?

« Can we get a quad
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ratic bound with at most %n points in a plane?
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