Counting Ordinary Lines in Complex Space

Charles Wolf¹ (with Abdul Basit, Zeev Dvir² and Shubhangi Saraf¹)

¹Rutgers University

²Princeton University

Background

Sylvester-Gallai Theorem: Given a finite set of points in \mathbb{R}^2 , either

- all the points are collinear; or
- 2 there is a line passing through exactly 2 points, called an ordinary line.

Figure 1: Kelly's [4] picture proof of the Sylvester-Galllai Theorem.

Question: How many ordinary lines do n non-collinear points determine? $t_r := \#$ of lines through exactly r points. (So $t_2 = \#$ of ordinary lines.)

Answer (Green-Tao)[2]: n non-collinear points in \mathbb{R}^2 have $t_2 \geq \frac{1}{2}n$. This is tight due to the following construction by Böröczky:

Figure 2: $\frac{n}{2}$ points on a circle and $\frac{n}{2}$ points on a line determining $\frac{n}{2}$ ordinary lines

The Sylvester-Gallai Theorem is not true over \mathbb{C}^2 . Here is a counterexample:

Figure 3: Hesse configuration[1]: 9 inflection points of $X^3 + Y^3 + Z^3 = 0$.

We do have an analogue of the Sylvester-Gallai Theorem in \mathbb{C}^3 : **Theorem (Kelly, [3])** Given a finite set of points in \mathbb{C}^3 , either:

- all the points are coplanar; or
- 2 there exists an ordinary line.

Main Question

Given n points in \mathbb{C}^3 , not all coplanar, how many ordinary lines do they determine?

Results

Theorem 1: Given a set of n points in \mathbb{C}^3 , at most n-2 points in any plane,

$$t_2 \ge \frac{3}{2}n.$$

Figure 4: **Exceptional Case:** n-1 coplanar points have as few as n-1 ordinary lines.

Theorem 2: Given a set of n points in \mathbb{C}^3 , at most $\frac{2}{3}n$ points in any plane,

$$t_2 \ge \frac{3}{2}n + c \sum_{r \ge 4} r^2 t_r.$$

Theorem 3: Given a set of n points in \mathbb{C}^4 , at most $\frac{2}{3}n$ in any three-dimensional affine subspace,

$$t_2 \ge \frac{1}{12}n^2$$

Proof Sketch

- Given $\{v_1, \ldots, v_n\} \in \mathbb{C}^d$, let V be the $n \times d$ matrix with i^{th} row v_i .
- Construct a matrix A, where each row of A corresponds to coefficients of a collinear triple v_i, v_j, v_k .

Figure 5: * indicates a nonzero coefficient of a collinear triple.

Proof Sketch Continued

If A has no large zero submatrix:

- If t_2 is small enough, we can show A has high rank.
- This forces V to have small rank, small enough to make the points span only 2 dimensions. Contradiction!

If A has a large zero submatrix:

Figure 6: The large zero submatrix has support on rows of U and columns of W.

We get a lemma that one of the the following 2 cases holds:

- (When |W| is large:) $t_2 \ge \frac{|W|}{2}n$, or
- (When |W| is small:) There is point with least $\frac{2}{3}n |W|$ ordinary lines.

Iterate this lemma by pruning points with many ordinary lines. Done!

Open Questions

- Is the bound on Theorem 1 tight?
- Can we get a quadratic bound with at most $\frac{2}{3}n$ points in a plane?

References

[1] D. Eppstein.

https://upload.wikimedia.org/wikipedia/commons/ thumb/e/eb/Hesse_configuration.svg/360px-Hesse_configuration.svg.png.

[2] B. Green and T. Tao.

On sets defining few ordinary lines.

Discrete & Computational Geometry, 50(2):409–468, 2013.

[3] L. Kelly.

A resolution of the Sylvester-Gallai problem of J.-P. Serre. Discrete & Computational Geometry, 1(1):101–104, 1986.

[4] L. Kelly and W. Moser.

On the number of ordinary lines determined by n points. Canadian Journal of Mathematics, 10:210–219, 1958.

Contact Information:

Email:ciw13@math.rutgers.edu Website: math.rutgers.edu/ \sim ciw13

